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Abstract: The last two decades of the XX century marked the starting point for the central banks across the globe to move 

their payment and settlement systems into Real Time Gross Settlement (RTGS) mode. Despite the fact that RTGS systems can 

effectively eliminate the credit exposure between the paying bank and the receiving bank at the interbank level by means of 

fast final and irrevocable money transfer, there is another serious problem associated with these systems. RTGS systems turned 

out to be liquidity-demanding arrangements, as opposed to deferred net settlement systems. Thus, the efficiency of liquidity 

management arrangements is the precondition of smooth RTGS operation, especially in tough times when liquidity is a 

systemic shortage. If liquidity management is inefficient, the RTGS system may stop operating properly by terminating in the 

grid-lock state brining chaos to the national economy. In this research we suggest the practical approach to solve the problem 

of seeking the maximization of aggregate value of payment instructions under liquidity shortage, including the most severe 

scenarios. The classification of the RTGS queue statuses is suggested and discussed. Some complementary results are 

articulated, including: (a) the statement that the formal mathematical optimization problem lies in the NP class of the 

computational complexity (the class of problems solved in polynomial time by nondeterministic Turing machine); (b) the 

equivalence between MaxFlow-MinCost problem (from the network flow theory) and the dual linear problem of the linear 

program relaxation of the initial optimization problem; (c) the illustration that no optimization strategy, other than the 

suggested one, can deliver substantially better optimization results. Despite enormous efforts, there were no previous research 

results reasonably claiming the near optimality of liquidity optimization strategy in RTGS systems under severe liquidity 

shortages. The results of this research may help the central banks and other RTGS system operators to ensure the protection of 

their payment systems from future liquidity crises and bring the resilience of respective national economies to the next level of 

sustainability. 

Keywords: Operational Research, Bank Clearing Problem, Max Flow Min Cost Problem, Gridlock Resolution,  

Liquidity Efficiency, Liquidity Saving Mechanism, Integer Linear Programming 

 

1. Introduction 

1.1. Historical Notes 

Back in August 1998 just after few days the Russian 

Government announced it’s default of State Short-Term 

Government Bonds the payment system of the Central Bank 

of the Russian Federation was pressed by the most severe 

shock in its history. The liquidity in banking system was 

wiped away by the panic of clients and by the increased 

value of their obligations in Russian currency. The interbank 

lending market froze at zero volumes. The queues of 

unsettled payment instructions due to the lack of funds on the 

accounts of credit institutions in the CBR payment system 

started to appear and grow. At the end-of-day procedures the 

quantity of rejected payment instructions was measured in 

dozens per cent of the total flow. 

As part of the response measures to the dramatically 

changing conditions the Bank of Russia undertook a 

sequence of actions, where the alternate calculation algorithm 

was one of those. However, it took several hours to complete 

the calculations and the algorithm could not be admitted as 

an acceptable solution at that moment. 

The research to improve the characteristics of the 
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algorithm were resumed after the shock of the liquidity crisis 

disappeared. This publication outlines the key academic 

results of this research, including the proof that the formal 

problem belongs to NP class, the calculation strategy based 

on identified peculiarities of the real-world instances of the 

problem, the illustration that no other gridlock resolution 

strategy may bring results substantially better than those 

illustrated here. 

1.2. The Statuses of the Queue of Payments in RTGS 

System 

To deal with possible liquidity shortage modern RTGS 

systems have the queueing mechanism. When the funds are 

insufficient to immediately process the new-come payment 

instruction, it is put in the queue in anticipation of future 

settlement opportunity. The settlement is triggered either by 

the offsetting payment instruction or at the specified time 

later during the day. 

We say that at the time when the settlement is triggered, 

the queue at the RTGS system is in the “general” status, 

where it is possible to select the sub-collection of the 

payments and simultaneously execute them as a group. The 

remaining payment instructions continue to wait the next 

settlement opportunity. The settlement procedure is thus 

trying to transform the status of the queue from “general” to 

some other category. 

It is natural to request that the sub-collection of payments 

subject for execution is as large as possible. Therefore, the 

remainder of the queue should not contain further immediate 

easy opportunities for the settlement. 

We call the status of the queue as “gridlocked” when no 

further settlement is possible, provided that FIFO rule and 

priorities are respected. Thus, the transformation from the 

“general” status to “gridlocked” status will be the first type of 

the queue transition. 

We call the status of the queue as “deadlocked” when no 

further settlement is possible, with no requirement to observe 

the FIFO rule and priorities. Thus, the transformation from 

the “general” status to “deadlocked” status will be the second 

type of the queue transition. 

We call the status of the queue as “minimally deadlocked” 

when the collection of the remaining payments is minimal 

across all “deadlocked” queues, to which the initial “general” 

status can transit. Thus, the transformation from the “general” 

status to “minimally deadlocked” status is the third and the 

most wanted type of the queue transition. The respected 

reader may reasonably ask, why this third type of transition is 

so welcome, when the banks usually tend to respect FIFO 

rule and payment priorities, while this type of transition 

seems not to. The answer is that the response from the 

banking community is seriously depended on the form of the 

question they are being asked. If we reformulate the same 

question (whether they would prefer to respect the FIFO rule 

and payment priorities) to read as “what would you prefer: to 

leave waiting a handful of prioritized hundred dollar 

payments in the queue OR ALTERNATIVELY to leave 

there dozens of thousands of other payments most of which 

may be of higher value”. It is unlikely that the banks will 

produce the same answer. 

The picture below illustrates the statuses and the transition 

options. 

 

Figure 1. The statuses and the transition options. 

If the RTGS system has the third option of payment queue 

transition, it never ends up in the “gridlocked” state. It 

demonstrates the unparalleled resilience to severe liquidity 

shortages, producing no headache to the payment system 

operator and participating banks, and can be called the 

gridlock-proof. 

2. The Proposed Solution Strategy 

2.1. Mathematical Formalism 

Let us consider the payment instructions submitted for 

settlement procedure to the payment system by the 

participating banks. Each of such instructions has it’s own 

unique identification number, as well as identifies the 

account to be debited, the account to be credited and the 

value to be moved. 

Let � be the total quantity of the accounts affected in any 

way by at least one of those payment instructions. 

Let ��  – be the value of the resource kept at the account 

number � and available for settlement during the settlement 

cycle (account balance plus overdraft limit minus active 

restrictions). 

We consider the general case, where there can be more 

than one payment instruction that tries to debit account 

number � and to credit the account number �. Let ����  be the 

value of the 	 − �ℎ  such payment instruction. We then 

introduce the decision variable 
��� , taking it’s value =1, if 

the corresponding payment instruction can be settled, and it’s 

value =0 in the opposite case. At some stages of the solving 

procedure we shall refrain from obeying the integrality 

restriction to the decision variables. In such cases we 

consider the variables 
��� to be within 

0 ≤ 
��� ≤ 1                                  (1) 

interval. 

Since there can be no such account with negative resource 

at the end of settlement cycle, the difference between the 

aggregated value of debiting payment instructions and 
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aggregated value of crediting payment instructions should 

not exceed �� . The corresponding inequality restriction has 

the form 

∑ ���� ∗ 
����� −∑ ���� ∗ 
����� ≤ ��               (2) 

It can be easily verified that the quantity of such 

restrictions is equal to the quantity of the accounts, that is �. 

We seek to maximize the aggregate value of all settled 

payment instructions, therefore we shall maximize the 

Objective function 

� = ∑ ���� ∗ 
������                           (3) 

In order to change the character of the restriction in (1) and 

(2) from inequality to equality we shall introduce the 

ancillary non-negative variables ����  and �� . 0 ≤ ����                                     (4) 

0 ≤ ��                                     (5) 

With their help the collection of formulas (1) - (3) will be 

re-written as follows: 

���
�� 0 ≤ 
���0 ≤ ����0 ≤ ��
��� + ���� = 1∑ ���� ∗ 
����� −∑ ���� ∗ 
����� + �� = ��
��� − ������ � → "�


           (6) 

And here we get the formal optimization problem. Michael 

M. Güntzer, Dieter Jungnickel, Matthias Leclerc gave it the 

name “Bank clearing problem”, providing each sub-class of 

the problem with subscript showing the number of 

participating banks (accounts) [5]. For example, they called 

the sub-class of the problem where 20 accounts are visible, as �#$%&. 

We shall refrain from sub-classification and providing the 

subscripts for the reason that regardless of the quantity of the 

participating banks (accounts), this problem falls into the one 

wide class of integer linear programming. 

The point, where 

'
��� = 0���� = 1�� = ��
                                   (7) 

will be the initial feasible basic solution. 

2.2. Computational Complexity 

There is a widely accepted perception that the problem (6) 

is NP-complete [5]. However, the available proof is based on 

the illustration that the �#$%  is actually the Subset-Sum 

Problem. Thus, the proof is formally valid only for the case 

where only two banks participate. 

The correct proof for the entire BCP problem (6) must be 

based on the reduction of any known NP-complete problem 

to the BCP. 

Below we demonstrate the less strict property of the BCP 

and show that it lies in NP class by reducing it to 0-1 integer 

linear programming problem, which is known to be NP-

complete. 

Theorem. Problem (6) lies in NP. 

The unknown variables 
���  are 0-1 integers. The 

integrality of 
���  and the equation 
��� + ���� = 1 yield that ����  are also 0-1 integers. Finally, the unknown variables ��  
are integers in range 0 ≤ �� ≤ �� . 

Let us consider the representation of the ��  in the binary 

notation. 

�� = (ℎ�) ∗ 2)+
),&  

The representation of any number in the binary notation 

uses only zeros and ones. Therefore each ℎ�)  is 0-1 integer, L 

is non-negative integer and is well below the length of the 

Turing machine code of the entire BCP problem submitted 

for processing. 

Therefore, we may re-write the problem (6) in the form: 

���
�� 0 ≤ 
���0 ≤ ����0 ≤ ℎ�) ≤ 1
��� + ���� = 1∑ ���� ∗ 
����� −∑ ���� ∗ 
����� + ∑ ℎ�) ∗ 2)+),& = ��
��� − ������ , ℎ�) 	− ������ � → "�


   (8) 

After the transformation all the unknowns are 0-1 integers. 

All other values are integers. 

This problem is 0-1 integer programming which is known 

to be NP-complete (Richard Manning Karp (1972). 

"Reducibility Among Combinatorial Problems". In R. E. 

Miller; J. W. Thatcher; J. D. Bohlinger (eds.). Complexity of 

Computer Computations. New York: Plenum. pp. 85–103) 

Despite the fact that the problem is of a well-known class, 

no known algorithm is capable of solving it to optimality 

under the restricted time and computer memory (2020). It 

exhibits the exponentially growing computation complexity 

as the number of variables increases. 

2.3. Inventions and Tricks to Overcome the Computation 

Complexity 

2.3.1. “Second-best” Solution Instead of the Optimum 

Given the fact that the number of payments in CBR 

payment system is 500 000 (half a million) per hour, even the 

rough estimate will prove the optimal solution be impossible 

to find within reasonable time. In order to attack the problem 

further, we shall have to forget about global optimum and to 

be content with so-called “second-best” solution. The term 

“second-best” means that the solution we seek to find, is (i) 

feasible to the restrictions of problem (6); (ii) provably close 

to the global optimum of (6) in terms of the Objective 

function; (iii) unrestrictedly far from the global optimum of 
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(6) in terms of Euclidian distance. 

2.3.2. Linear Program Relaxation 

In order to seek the “second-best” solution it is quite 

natural to start form taking away the integrality restriction for 

the decision variables 
��� . 

After that the problem is re-formulated with no 

requirement for the variable 
��� to hold integer values: 

���
�� 0 ≤ 
���0 ≤ ����0 ≤ ��
��� + ���� = 1∑ ���� ∗ 
����� −∑ ���� ∗ 
����� + �� = ��

� → "�

       (9) 

This is nothing more than a linear program. 

It has (� + 2") variables and (� + ") restrictions, where "	– is the quantity of all payment instructions submitted for 

processing. 

The effective solving algorithms for the problems of the 

kind are well described in the literature. The most known is 

the simplex-method. It takes (2� + 3")3  atomic arithmetic 

operations to solve the problem to optimality in our case. 

Other polynomial estimates for simplex method in arbitrary 

matrixes can be found in [12] and [13]. 

But even dramatically reduced computation complexity of 

the problem requires substantial computational power which 

might be beyond available capacity. There are two main 

reasons for that, and both could be effectively overcome. 

2.3.3. Reducing the Quantity of Variables in Linear 

Program 

The first reason of high computation complexity is that the 

number of variables in (9) is high. To reduce this number we 

may insert one new variable 4�� instead of multiple variables 
��� . We can do so since we no longer are bound by the 

integrality restriction for variables 
��� . We denote the sum ∑ �����  as 5�� . 

5�� = (�����  

Since every 
���  cannot exceed 1, the following 

observation is true 

(���� ∗ 
���� ≤ (����� = 5�� 

Therefore, unless ∑ ����� = 0, the formal definition for the 

variable 4�� will be 

4�� = ∑ ���� ∗ 
����∑ �����  

If ∑ ����� = 0, then there is no payment instruction that 

tries to debit account number �  and to credit the account 

number �. In this case the variable 4�� will not be introduced. 

It immediately follows from the definition, that 

0 ≤ 4�� ≤ 1 

With the help of above mentioned substitution, the 

problem (9) will take the form 

���
�� 0 ≤ 4��0 ≤ 6��0 ≤ ��4�� +6�� = 1∑ 5�� ∗ 4��� − ∑ 5�� ∗ 4��� + �� = ��

7 → "�

         (10) 

Where the Objective function G inherits the properties of 

Objective function F and is naturally defined as 

7 = ∑ 5�� ∗ 4����                          (11) 

The ancillary non-negative variables 6��  are introduced in 

order to ensure that inequality 4�� ≤ 1  transforms into 

equation 4�� +6�� = 1. 

The point where 

'4�� = 06�� = 1�� = ��
                                 (12) 

will serve as the initial feasible basic solution. 

Thus the quantity of variables has been reduced by one 

order of magnitude. 

Once we know the solution to (10), we will derive the 

respective non-integer variables 
���  by means of the 

following simple routine, which should be run for every 

valid
1
 pair of {�, �}: 

******* 

BEGIN 

Assign all 
��� : = 0 

For each ; in range {1, 	} 
(Try) 
��<: = 1 

If ∑ (���� ∗ 
���)� > 5�� ∗ 4��  

Then (redeem) 
��<: = 1 − ∑ (>?@A∗B?@A)A CD?@∗E?@>?@F  

Exit routine 

Else (leave) 
��<: = 1 

End if 

Next s 

END. 

******* 

This routine sequentially tries each 
��� to be equal 1, until 

such assignment results in violation of the leading inequality ∑ ���� ∗ 
���� ≤ ∑ ����� . Ahead of the violation, all 
���  

variables get the value = 1. Once the violation has occurred, 

the respective 
���  variable gets non-integer value 

somewhere in between zero and one, and the remaining 
��� 

variables get value = 0. 

                                                             

1 valid pair of {�, �} means ∑ ����� > 0. 



87 Vladimir Kulipanov:  The Gridlock-Proof Functionality in Real Time Gross Settlement Systems  

 

2.3.4. Switching to Dual Linear Program 

The second reason that this linear problem (10) requires 

substantial computational power is that the initial basic 

solution (12) is very “far” from the optimal one. Both in 

terms of Objective function and in terms of Euclidian 

distance. The calculation procedure may take too long to 

complete, whilst the result will be the optimal solution of the 

linear program, not the original integer linear program. To 

deal with this second difficulty we consider the dual linear 

program. 

Before this discussion, it is worth making a little step back 

from the formalism of linear problem (10) and taking away 

the ancillary variables. Formalism (10) is good for computer 

implementation, but the theoretical discussion goes better 

without them. 

Thus, we are a little bit back to 

' 0 ≤ 4��4�� ≤ 1∑ 5�� ∗ 4��� −∑ 5�� ∗ 4��� ≤ ��7 → "�

               (13) 

2.3.5. Dual Linear Program and It’s Interpretation in 

Terms of Network Flow 

The idea is to solve the dual linear program instead of the 

direct one. We are not aware of any other research with 

regard to “bank clearing problem” where the authors 

implement the concept of linear duality, ahead of our initial 

publication in 2015. In this sense the result found in that 

work was not known before. The concept of linear duality is 

well described in the available literature (e.g., [14, 15, 16]). 

With the “bank clearing problem” the switch to duality yields 

substantial computation benefits to be described below. 

The following observation will provide the reader with the 

high-level understanding of these benefits. Assume that the 

initial (“direct”) linear problem (13) for BCP is formulated in 

the way “Start from the point where nothing is settled. Settle 

as much as possible under resources restriction”, the dual 

linear problem is formulated in the way “Start from the point 

where everything is settled, even if the balances of some 

accounts will go to infeasible negative area. Bring the 

accounts to the consistent state (non-negative balance) whilst 

rejecting as less as inevitable”. The computational benefit 

comes from the fact that in the real-world instances of the 

BCP there are few accounts that are in non-consistent state 

(their balances are initially negative) at the starting point of 

dual linear problem. In other words, it is hard to imagine that 

even under the most severe liquidity shortage there will be 

more than a handful of banks unable to cover their net debit 

positions. The vast majority will have non-negative net debit 

positions. Therefore the amount of computational work in 

dual linear problem of BCP is nearly one order of magnitude 

less, compared to the computational work in direct linear 

problem. 

Now we shall transform the linear program (13) into a dual 

one. (The reader is addressed to [14, 15, 16] for details). 

According to the theory of linear duality, each variable of 

the “direct” linear program has the associated restriction in 

the dual linear program. Let us take the particular variable 4�� . 

We consider the associated column in matrix (13) which 

generates the corresponding restriction in the dual linear 

program. This column has only three non-zero elements. 

The first non-zero element comes with (5��)  coefficient, 

derived from ∑ 5�� ∗ 4��� −∑ 5�� ∗ 4��� ≤ ��  inequality 

(associated with index � of the account-balance restrictions in 

the “direct” linear program). 

The second non-zero element appears in ∑ 5�� ∗ 4��� −∑ 5�� ∗ 4��� ≤ ��  inequality (associated with index �  of the 

account-balance restrictions in the “direct” linear program), 

and is equal to (−5��). 

Finally, the last non-zero element (equals 1) appears in 4�� ≤ 1 inequality (associated with the {(�, �)} pair of indexes 

of the “4��  upper-bound” restrictions in the “direct” linear 

program). 

Since the respective coefficient in the Objective function G 

equals (5��), the inequality of the dual linear problem will 

have the form 

5�� ∗ G� − 5�� ∗ G� + 1 ∗ H�� ≥ 5��                (14) 

where G�, G�, H�� are the dual variables. Each of them is non-

negative. 

It is now important to draw attention to the function G� . 
This function is defined for every node (that is, for every 

account) and may be interpreted as a price function in the 

residual network of the BCP. Before proceeding to residual 

network of the BCP it is important to define the BCP 

network. 

2.4. The Properties of the BCP Network and BCP Residual 

Network 

2.4.1. Description of the BCP Network 

We shall start with the definition of the flow in the BCP 

network. 

The BCP network is defined as directed graph, where 

every node corresponds to the respective account. 

The ordered pair (�, �) of the nodes in the BCP network is 

connected by the edge, which has two parameters: (a) the 

capacity, and (b) the cost. 

The function flow over the edge (�, �) is feasible, if 

0 ≤ HJKL(�, �) ≤ 5�M�5��4(�, �) 
The cost of the edge (�, �) in the BCP network is constant 

and equals 1. 

The term 5�M�5��4(�, �) will serve as interpretation of the 

aggregate value of payment instructions which try to debit 

the account � and credit the account �. The term HJKL(�, �) 
will serve as interpretation of the aggregate value of rejected 

payments in the direction from the account � to the account �. 
The cost of the entire flow in the BCP network is 

5K;�(HJKL) = (HJKL(�, �) ∗ 5K;�(�, �)�,� = (HJKL(�, �)�,�  

We shall define the intensity of flow over the node � as 

follows: 
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N����;��4(�) = (HJKL(�, O)� −(HJKL(M, �)�  

The intensity of the node may be thought of as an indicator 

how much does the particular node inject into or consume 

from the rest of network. 

We shall refer to the node �  as Debtor if this node has 

strictly positive intensity, and we shall refer to the node � as 

Creditor if this node has strictly negative intensity. If the 

intensity of the node is exactly zero, then this node is 

balanced and will be neither the Debtor nor the Creditor. 

To make the proof of the below statements easier, the two 

additional nodes are introduced into the BCP network. 

The node S (stands for “source”) and the node T (stands 

for “termination”). 

We shall connect the node S with every Debtor by the 

edge with capacity: 

#�M�5��4(P, Q�R�K ) = N����;��4(Q�R�K ) 

We shall connect every Creditor with the node T by the 

edge with capacity: 

#�M�5��4(	# �S��K , T) = −N����;��4(# �S��K ) 
The cost of the new edges (P, Q�R�K ) and (	# �S��K , T) 

in the BCP network will also be equal to 1. 

We shall extend the definition of the flow in the BCP 

network by defining the capacity and the flow over the edges (P, Q�R�K )	(# �S��K , T). 
The flow over the edge (P, Q�R�K ) will be: 

HJKL(P, Q�R�K ) = 5�M�5��4(P, Q�R�K ) = N����;��4(Q�R�K ) 
where the value of N����;��4(Q�R�K ) was calculated before the introduction of the nodes S and T. 

The capacity and the flow over the edge (# �S��K , T) will be: 

HJKL(# �S��K , T) = 5�M�5��4(# �S��K , T) = −N����;��4(# �S��K ) 
where the value of N����;��4(# �S��K )  was calculated 

before the introduction of the nodes S and T. 

It is easy to see that the extended flow in the BCP network 

leaves every node (except the nodes S and T) balanced. 

It is also easy to see that N����;��4(P) = −N����;��4(T) 
It is, therefore, reasonable to define the intensity of the 

entire flow in the extended BCP network as follows: 

N����;��4(HJKL) = N����;��4(P) 
From now on, by referring to BCP network we shall mean 

the extended BCP network. 

We are now ready to describe the BCP residual network. 

2.4.2. Description of the BCP Residual Network 

The BCP residual network is defined as directed graph, 

where every node corresponds to the respective account, in 

full analogy with the BCP network. (Two extra nodes S and 

T from the extension are also included from the very 

beginning). 

As opposed to BCP network, the ordered pair (�, �) of the 

nodes in the BCP residual network is connected by the edge, 

which has three parameters: (a) the available direct capacity, 

(b) the available reverse capacity, and (c) the cost. 

The available direct capacity in the BCP residual network 

is defined as the difference between the capacity in the BCP 

network and the flow over the edge in the BCP network. 

�U��J�RJ�	S� �5�	5�M�5��4	(�, �) = 5�M�5��4(�, �) − HJKL(�, �)  
The available reverse capacity in the BCP residual network 

is defined as the flow over the counter-directed edge in the 

BCP network. 

�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) = HJKL(�, �) 
We shall define the cost of the edge (�, �)  in the BCP 

residual network as follows: 

5K;�(�, �) =
���
�� −1, �H	�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) > 0

1 V�H	�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) = 0	��S�U��J�RJ�	S� �5�	5�M�5��4	(�, �) > 0
��H����4 V�H	�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) = 0	��S�U��J�RJ�	S� �5�	5�M�5��4	(�, �) = 0

  

The term “infinity” is actually used to represent any 

value which is above the cost of any feasible chain along 

the edges with non-zero capacity (both direct or reverse) in 

the BCP residual network. The value 3*n is well suited for 

that role, for the reason that even if the chain passes 

through every node in the BCP residual network over the 

edges with zero reverse capacity and non-zero direct 

capacity, the cost of that chain will be (n+1) at most. 

Passing through the edges with zero available capacity is 

prohibited. 

2.4.3. The Maximum Flow in the BCP Network and in the 

BCP Residual Network 

Definition of the Max flow in BCP network 

The feasible function flow with the maximum possible 

intensity in the extended BCP network will be Max flow 

function. 

Properties of the BCP residual network 

Claim 1. 

Any feasible flow in the non-extended BCP network is a 

Max flow in the BCP extended network with the source S 
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and termination T. 

The proof immediately follows from the definition of the 

BCP extended network. It is sufficient to point out that the 

source node S is connected to the rest of the BCP extended 

network by the edges with the exhausted capacities. And so 

does the node T. Therefore it is impossible to transfer more 

from the node S to the node T compared to what is 

transferred by the known function flow. 

2.4.4. The Maximum Flow Minimum Cost in the BCP 

Network 

Claim 2. 

The Max flow function flow in the BCP extended network 

is also Max flow Min cost if and only if there are no negative 

cost cycles in the BCP residual network. 

Part 1 (if there is a negative cost cycle in the BCP residual 

network, then the function flow is not Min cost) 

Consider the negative cost cycle in the BCP residual 

network. Since it’s cost is negative, every edge in the 

respective cycle in the extended BCP network has either 

positive available reverse capacity, or positive available 

direct capacity. The reason is that otherwise (if both direct 

and reverse capacities are zeros) the cost of the respective 

edge in the BCP residual network would be infinity, and the 

cost of the entire cycle will be infinity as well. 

Every node in the cycle of the BCP residual network may 

be transited by the edges in the four possible combinations 

regarding their costs. The first option is that we arrive to the 

node via the edge with the 5K;� = −1 and leave the node via 

the edge with the 5K;� = −1. The second option is that we 

arrive to the node via the edge with the 5K;� = −1 and leave 

the node via the edge with the 5K;� = +1. The third option is 

that we arrive to the node via the edge with the 5K;� = +1 

and leave the node via the edge with the 5K;� = −1. And 

finally, the fourth option is that we arrive to the node via the 

edge with the 5K;� = +1 and leave the node via the edge 

with the 5K;� = +1. 

Now we shall show how to modify the flow in the 

extended BCP network, so that it’s intensity remains the 

same, but the cost is decreased. 

Each edge (u,v) of the cycle produces the flow alternation 

opportunity according to the rule: 

∆HX,Y = Z �U��J�RJ�	S� �5�	5�M�5��4([, U); 	�H	5K;�([, U) = 1�U��J�RJ�	 �U� ;�	5�M�5��4([, U); 	�H	5K;�([, U) = −1 

Note, that ∆HX,Y is strictly positive value (∆HX,Y > 0). 

We shall denote ∆H = min{(X,Y)} ∆HX,Y . That is, we 

compare all flow alternation opportunities along the edges 

and select the least one. Note, that ∆H  is also a strictly 

positive value (∆H > 0). 

Let us produce the recipe to the flow alternation in the 

BCP extended network: 

If the edge (u,v) of the cycle has the 5K;�([, U) = −1 in 

the BCP residual network, we shall decrease the flow over 

the counter-directed edge (v,u) in the extended BCP network 

by the value ∆H. This alternation is possible, since: 

∆H ≤ ∆HX,Y = �U��J�RJ�	 �U� ;�	5�M�5��4([, U) = HJKL(U, [) 

If the edge (u,v) of the cycle has the 5K;�([, U) = +1 in 

the BCP residual network, we shall increase the flow over the 

same edge (u,v) in the extended BCP network by the value ∆H. This alternation is possible, since: 

∆H ≤ ∆HX,Y = �U��J�RJ�	S� �5�	5�M�5��4([, U) 
Now we shall consider every transition option (of the four 

possible) in the BCP residual network and discuss how the 

balance of the respective node is affected by the suggested 

flow alternation. Assume that we interested to observe the 

balance on the node v in the cycle and we arrive there from 

node u and leave towards node w. 

In the first option where we arrived via the edge (u,v) with 

the 5K;� = −1 and leaved this node via the edge (v,w) with 

the 5K;� = −1, we have decreased both the inbound flow 

over the edge (w,v) and the outbound flow over the edge (v,u) 

by the same value ∆H. Thus, the balance of the node v is not 

affected by the change. 

In the second option where we arrived via the edge (u,v) 

with the 5K;� = −1 and leaved this node via the edge (v,w) 

with the 5K;� = +1, we have increased the outbound flow 

over the edge (v,w) and decreased the outbound flow over the 

edge (v,u) by the same value ∆H. Thus, the balance of the 

node v is not affected by the change. 

In the third option where we arrived via the edge (u,v) with 

the 5K;� = +1 and leaved this node via the edge (v,w) with 

the 5K;� = −1, we have decreased the inbound flow over the 

edge (w,v) and increased the inbound flow over the edge (v,u) 

by the same value ∆H. Thus, the balance of the node v is not 

affected by the change. 

Finally, in the fourth option where we arrived via the edge 

(u,v) with the 5K;� = +1 and leaved this node via the edge 

(v,w) with the 5K;� = +1 , we have increased both the 

outbound flow over the edge (v,w) and the inbound flow over 

the edge (u,v) by the same value ∆H. Thus, the balance of the 

node v is not affected by the change. 

Therefore, we may conclude that the suggested flow 

alternation is feasible and does not change the intensity of the 

flow in the extended BCP network. However, the cost of the 

alternated flow can be obtained from the cost of the initial 

flow by adding the value which is equal to ∆H times the cost 

of the cycle, which is strictly negative. For that reason the 

initial flow cannot be Min cost. 

Part 2 (if function flow is not Min cost then there is a 

negative cost cycle in the BCP residual network) 

Assume that another function HJKL⊛ which is of the same 

intensity and is Min cost. Consider the flow which is the 

difference between the functions HJKL⊛  and flow. This 

difference is circulation, since it brings the intensity of every 

node to zero. Note, that the cost of this circulation is negative 

according to the BCP residual network. Since every 

circulation can be entirely decomposed into cycles, then the 

cost of at least one these cycles has to be negative. 

2.4.5. The Price Function 

Now we are ready to define the price function in the BCP 

residual network. This function can be used to evaluate the 
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optimality (to verify Min cost property) of the non-extended 

BCP network. 

Consider the ordered pair of nodes (�, �), which has strictly 

positive capacity (either direct or reverse) from the node � to 

the node � in the BCP residual network. For the BCP residual 

network we call the price function G feasible if for every edge (�, �) with strictly positive capacity (from the node � to the 

node �) it holds: 

G(�) − G(�) + 5K;�(�, �) ≥ 0                   (15) 

Claim 3. 

The BCP residual network has feasible price function z if 

and only if it contains no negative cost cycles. 

Part 1 (If there is a feasible price function in the BCP 

residual network, then there are no negative cost cycles) 

Assume that there is a feasible price function z in the BCP 

residual network. Let us evaluate the cost of any given cycle 

in the BCP residual network. The cost of the cycle is a sum 

of all cycle edges: 

( 5K;�([, U){(X,Y)}∈DED)b  

We add and subtract the sum of prices of vertexes along 

the cycle: 

∑ 5K;�([, U){(X,Y)}∈DED)b = ∑ 5K;�([, U){(X,Y)}∈DED)b + c∑ dYY∈DED)b − ∑ dXX∈DED)b e  

Then, regroup 

∑ 5K;�([, U){(X,Y)}∈DED)b = ∑ (5K;�([, U) + dY − dX){(X,Y)}∈DED)b   

Use (15), and obtain 

( 5K;�([, U){(X,Y)}∈DED)b ≥ 0 

That is, the cost of any given cycle in the BCP residual 

network is non-negative. 

Part 2 (If there are no negative cost cycles in the BCP 

residual network then there is a feasible price function) 

We are going to show that the shortest path distance 

(further: Spd) of any vertex u in the residual BCP network, 

where the cost of an edge is taken as it’s length may be used 

to produce the price function. We define the function 

f([) = −PMS([) 
Now we shall show that f([)  meets the definition 

requirement of the price function. 

Let us start from the termination point T. Assign the PMS(T) = 0 

Compute the shortest path distances for every reachable 

vertex using Bellman-Ford algorithm. It is possible, since 

there are no negative cost cycles. If the vertex is not 

reachable, it means that there is now flow through this node, 

and it’s price may be taken arbitrary. We shall assign the 

price=0 in such cases. 

According to the properties of the shortest path distance: 

PMS([) ≤ PMS(U) + 5K;�(U, [) 
It easily yields: 

PMS(U) − PMS([) + 5K;�(U, [) ≥ 0 

−f(U) + f([) + 5K;�(U, [) ≥ 0 

f([) − f(U) + 5K;�(U, [) ≥ 0 

Which is exactly the definition of the price function (15) 

Once the BCP residual network does not contain negative-

cost cycles – the respective flow of the BCP network has the 

minimum cost. Thus, the existence of the feasible price 

function over the BCP residual network is the criteria for the 

minimum cost of the flow in the BCP network. Remember 

that the existence of that function is a precondition of any 

feasible solution to the dual linear program (14). That is, 

every feasible solution to the dual linear program produces 

the MinCost property of the flow in BCP network. 

Please note, that (15) and (14) are equivalent. Below is the 

short proof of that. 

Claim 4. (15) and (14) are equivalent statements 

Since 5K;�(�, �) ≥ −1 , we may introduce the value ��� = 5K;�(�, �) + 1 ≥ 0 

G(�) − G(�) + 5K;�(�, �) ≥ 0 

G(�) − G(�) + 5K;�(�, �) + 1 − 1 ≥ 0 

G(�) − G(�) + (5K;�(�, �) + 1) − 1 ≥ 0 

G(�) − G(�) + ��� − 1 ≥ 0 

G(�) − G(�) + ��� − 1 ≥ 0 

G(�) − G(�) + ��� ≥ 1 

5�� ∗ G(�) − 5�� ∗ G(�) + 5�� ∗ ��� ≥ 5��  

Since both the unknown variable H��  and the product 5�� ∗ ��� are non-negative values, we are under no burden to 

define H�� = 5�� ∗ ��� . This equation should be treated as 

guidance how to obtain the value of the dual variable H�� 

based on the knowledge of the 5K;�(�, �) , and vice versa 

(how to obtain the value of the 5K;�(�, �)  based on the 

knowledge of the dual variable H��). 

This immediately yields: 

5�� ∗ G(�) − 5�� ∗ G(�) + H�� ≥ 5��  

The Objective function of the dual linear problem brings 

the intensity of the flow in the BCP network to the maximum. 

That is, the entire dual linear program to the BCP is 
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MaxFlow MinCost problem. 

2.5. Some Consequences and Complementary Results 

Based on the MaxFlow MinCost interpretation for the BCP 

residual network we may group the accounts according to 

their respective prices. 

The picture below illustrates the plausible outcome of that 

procedure: 

 

Figure 2. The plausible outcome of that procedure. 

The higher the number of the group, the more valuable is 

the liquidity, that may be injected onto the account from this 

group. For example, if we consider the task to decrease the 

value of rejected payments, the first candidate to receive the 

injection of liquidity will be the account from the left-most 

group. 

Consider the injection of liquidity into the account from 

the group zero. It is useless from the perspective of 

decreasing the value of the rejected payments. The reason is 

simple: there are no rejected payments originating from the 

accounts in this group. 

Consider the injection of liquidity into the account from 

the group three. It triggers a well-predicted chain of 

cascading settlement passing through each of the groups: 

 

Figure 3. The cascading settelement triggered by liquidity injection. 

Thus, every injected penny triggers the settlement process 

of the total value equal to the product of the rejected sum and 

the number of the group. 

As a general rule, the accounts from the left-most group 

(in our case – the Third) contribute the most to the Gridlock 

severity, whilst the injected liquidity into the accounts from 

the left-most group contribute the most to the Gridlock 

resolution. 

2.6. Meeting the Integrality Restriction 

Up to this point of the BCP resolution, our strategy was 

ultimately optimal. That is, no other strategy may deliver 

better results. 

However at this point we need to recall the integrality 

restrictions of the (6). 

The proposed approach we follow is a heuristic, and 

therefore it is in no way an optimal strategy from the global 

perspective of the entire BCP, and there are known artificial 

instances of the BCP where the suggested approach fails to 

produce non-trivial result despite there exists a feasible non-

trivial solution. Second, this is not the only possible heuristic 

that can deliver the results of the comparable quality during 

the comparable time of calculations. And finally, it is 

possible to design better heuristics for the problem. The most 

likely directions of the investigations would be within the 

areas: of integer linear programming, of NP-hard problems 

and of quantum computing. 

The integer step of the algorithm requires that it is run in a 

sequence of iterations, and the graphical structure of the 

optimal flow (the dual problem of continuous linear program 

relaxation) becomes a dynamic parameter. This structure is 

changed on each iteration to meet the amendments, that 

might be produced due to the deviation from the optimal flow 

(on one hand) and come as a result reduction of the intensity 

of the flow (on the other hand). 

At the start of the iteration the existing structure is 

analyzed to pick up the next suitable edge with strictly 

positive flow. 

In picking the suitable edge it is essential to take 

precautions that there will be no need to pick this edge again 

at the later iterations of the integer step. Or, at least, there 

will be little chances to do so. 

The heuristic suggests that it reasonable to select the next 

suitable edge from the edges, that link the left-most group 

(the group with highest price) with the immediately adjacent 

group (the group with highest price minus one). Indeed, if the 

precedence was arranged in apparently the opposite way, 

then it would mean that we would first process the flow that 

terminates in the group with the zero price (the cheapest 

nodes). But this flow is seriously dependent on the flow in 

the left side of the structure (more expensive nodes) which 

lacks flexibility. If subsequently we failed to find exact 

solution of the knapsack on the edge in the left (i.e. 

“expensive”) side of the picture, this would mean that the 

intensity of the flow terminating in the group with the zero 

price level would change, producing the need to repeat the 

respective knapsack search at the cheapest nodes. 
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Once the suitable edge is selected, the collection of the 

individual payments is retrieved from the database, where the 

ordered pair of accounts corresponds to the selected edge and 

to the direction of the flow. The collection is sorted in 

ascending manner for the payment value. 

The knapsack packing subroutine (solving Sub-Set Sum 

problem) is called to identify those payments, that taken as a 

group, give the aggregate value not less than the flow along 

the edge, but at the same time as low as possible. Ideal 

situation would be, if the aggregate value of the identified 

group of payments is equal to the flow intensity along the 

edge. It might sound strange and counterintuitive, but the 

ideal situation is a frequent event with really high probability. 

Observe that the knapsack problem has the obvious solution 

when the intensity along the edge achieves the capacity 

restriction: in this case all individual payments along the 

edge should be selected. There are other frequent situations, 

when the knapsack is solved to optimality as well. 

If the knapsack subroutine returns the ideal situation, then 

the current edge is removed from the structure and the 

intensity of the flow is decreased, but there is no further need 

to re-structure the remaining flow and we proceed with the 

next iteration. Otherwise the flow function and the respective 

structure are fine-tuned to respond to the deviation. 

The iteration is complete. 

Once the structure is empty (only one group of the 

accounts can be identified), there is no need to perform the 

next iteration and the entire algorithm is complete. The 

feasible solution to BCP is obtained. The practice and 

common sense judgement suggest that this solution is 

reasonably close to the optimal solution of the real-world 

instances of the BCP. 

3. Result 

The pivotal question is: how far is the “second-best” 

solution from the global optimum of the BCP? Below we 

bring some illumination on this question. 

Assume that vector 
∗ is the optimal solution to BCP. We 

do not know this vector and it is little chance to find it as a 

result of the computational procedures. 

However we can obtain the vector 
& which is the optimal 

solution to the linear program relaxation of the BCP. This 

vector is non-integer, but it produces the upper bound for the 

Objective function of the BCP. That is, 

�(
&) ≥ �(
∗) 
Assume that the solution we find as a result of the heuristic 

algorithm is 
g. It is feasible to all BCP restrictions including 

integrality restriction. For that reason 
g produces the lower 

bound for the Objective function of the BCP. That is, 

�(
&) ≥ �(
∗) ≥ �(
g) 
Every time the BCP is being solved, the upper and the 

lower boundaries can be easily obtained. The practice and 

common sense judgement suggest that the real-world 

instances of the BCP are prone to demonstrate the following 

inequality: 

�(
&) ≤ 1,03 ∗ �(
g) 
That is, the “second-best” solution is located within very 

narrow interval in terms of the Objective function. Therefore, 

no other computational strategy can demonstrate 

substantially better (more than few percentage points of the 

Objective function) results than that we have described above 

in this article. 

4. Conclusion 

Before this publication there was little hope to attack the 

Bank Clearing Problem for optimality. However the 

pragmatic approach illustrated here clearly shows that BCP 

may be successfully attacked within the well affordable time 

for the “second-best” solution which is hardly distinguishable 

from the global optimum in terms of the Objective function. 

This is achieved by the proof of the equivalence of (a) the 

dual linear program of the LP relaxation of the BCP and (b) 

the MaxFlow-MinCost in the BCP residual network. 

Under the liquidity shortage, the price structure of the 

MaxFlow-MinCost clearly pinpoints the sub-collection of the 

accounts which are the most efficient targets for liquidity 

injections from the National Central bank. The liquidity 

injections into the most “expensive” accounts produce the 

highest effect, whilst the liquidity injections into the accounts 

with zero price level are useless. 

The Real Time Gross Settlement Systems with the 

liquidity saving mechanism based on the proposed algorithm 

are prone to demonstrate unparalleled liquidity efficiency and 

are safe from falling into gridlocks even under the most 

severe liquidity shortages ever experienced in the banking 

history. 
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