

International Journal of Business and Economics Research
2020; 9(2): 83-93

http://www.sciencepublishinggroup.com/j/ijber

doi: 10.11648/j.ijber.20200902.15

ISSN: 2328-7543 (Print); ISSN: 2328-756X (Online)

The Gridlock-Proof Functionality in Real Time Gross
Settlement Systems

Vladimir Kulipanov

Department of Control and Applied Mathematics, Moscow Institute of Physics and Technology, Moscow, Russian Federation

Email address:

To cite this article:
Vladimir Kulipanov. The Gridlock-Proof Functionality in Real Time Gross Settlement Systems. International Journal of Business and

Economics Research. Vol. 9, No. 2, 2020, pp. 83-93. doi: 10.11648/j.ijber.20200902.15

Received: February 21, 2020; Accepted: March 5, 2020; Published: March 10, 2020

Abstract: The last two decades of the XX century marked the starting point for the central banks across the globe to move

their payment and settlement systems into Real Time Gross Settlement (RTGS) mode. Despite the fact that RTGS systems can

effectively eliminate the credit exposure between the paying bank and the receiving bank at the interbank level by means of

fast final and irrevocable money transfer, there is another serious problem associated with these systems. RTGS systems turned

out to be liquidity-demanding arrangements, as opposed to deferred net settlement systems. Thus, the efficiency of liquidity

management arrangements is the precondition of smooth RTGS operation, especially in tough times when liquidity is a

systemic shortage. If liquidity management is inefficient, the RTGS system may stop operating properly by terminating in the

grid-lock state brining chaos to the national economy. In this research we suggest the practical approach to solve the problem

of seeking the maximization of aggregate value of payment instructions under liquidity shortage, including the most severe

scenarios. The classification of the RTGS queue statuses is suggested and discussed. Some complementary results are

articulated, including: (a) the statement that the formal mathematical optimization problem lies in the NP class of the

computational complexity (the class of problems solved in polynomial time by nondeterministic Turing machine); (b) the

equivalence between MaxFlow-MinCost problem (from the network flow theory) and the dual linear problem of the linear

program relaxation of the initial optimization problem; (c) the illustration that no optimization strategy, other than the

suggested one, can deliver substantially better optimization results. Despite enormous efforts, there were no previous research

results reasonably claiming the near optimality of liquidity optimization strategy in RTGS systems under severe liquidity

shortages. The results of this research may help the central banks and other RTGS system operators to ensure the protection of

their payment systems from future liquidity crises and bring the resilience of respective national economies to the next level of

sustainability.

Keywords: Operational Research, Bank Clearing Problem, Max Flow Min Cost Problem, Gridlock Resolution,

Liquidity Efficiency, Liquidity Saving Mechanism, Integer Linear Programming

1. Introduction

1.1. Historical Notes

Back in August 1998 just after few days the Russian

Government announced it’s default of State Short-Term

Government Bonds the payment system of the Central Bank

of the Russian Federation was pressed by the most severe

shock in its history. The liquidity in banking system was

wiped away by the panic of clients and by the increased

value of their obligations in Russian currency. The interbank

lending market froze at zero volumes. The queues of

unsettled payment instructions due to the lack of funds on the

accounts of credit institutions in the CBR payment system

started to appear and grow. At the end-of-day procedures the

quantity of rejected payment instructions was measured in

dozens per cent of the total flow.

As part of the response measures to the dramatically

changing conditions the Bank of Russia undertook a

sequence of actions, where the alternate calculation algorithm

was one of those. However, it took several hours to complete

the calculations and the algorithm could not be admitted as

an acceptable solution at that moment.

The research to improve the characteristics of the

 International Journal of Business and Economics Research 2020; 9(2): 83-93 84

algorithm were resumed after the shock of the liquidity crisis

disappeared. This publication outlines the key academic

results of this research, including the proof that the formal

problem belongs to NP class, the calculation strategy based

on identified peculiarities of the real-world instances of the

problem, the illustration that no other gridlock resolution

strategy may bring results substantially better than those

illustrated here.

1.2. The Statuses of the Queue of Payments in RTGS

System

To deal with possible liquidity shortage modern RTGS

systems have the queueing mechanism. When the funds are

insufficient to immediately process the new-come payment

instruction, it is put in the queue in anticipation of future

settlement opportunity. The settlement is triggered either by

the offsetting payment instruction or at the specified time

later during the day.

We say that at the time when the settlement is triggered,

the queue at the RTGS system is in the “general” status,

where it is possible to select the sub-collection of the

payments and simultaneously execute them as a group. The

remaining payment instructions continue to wait the next

settlement opportunity. The settlement procedure is thus

trying to transform the status of the queue from “general” to

some other category.

It is natural to request that the sub-collection of payments

subject for execution is as large as possible. Therefore, the

remainder of the queue should not contain further immediate

easy opportunities for the settlement.

We call the status of the queue as “gridlocked” when no

further settlement is possible, provided that FIFO rule and

priorities are respected. Thus, the transformation from the

“general” status to “gridlocked” status will be the first type of

the queue transition.

We call the status of the queue as “deadlocked” when no

further settlement is possible, with no requirement to observe

the FIFO rule and priorities. Thus, the transformation from

the “general” status to “deadlocked” status will be the second

type of the queue transition.

We call the status of the queue as “minimally deadlocked”

when the collection of the remaining payments is minimal

across all “deadlocked” queues, to which the initial “general”

status can transit. Thus, the transformation from the “general”

status to “minimally deadlocked” status is the third and the

most wanted type of the queue transition. The respected

reader may reasonably ask, why this third type of transition is

so welcome, when the banks usually tend to respect FIFO

rule and payment priorities, while this type of transition

seems not to. The answer is that the response from the

banking community is seriously depended on the form of the

question they are being asked. If we reformulate the same

question (whether they would prefer to respect the FIFO rule

and payment priorities) to read as “what would you prefer: to

leave waiting a handful of prioritized hundred dollar

payments in the queue OR ALTERNATIVELY to leave

there dozens of thousands of other payments most of which

may be of higher value”. It is unlikely that the banks will

produce the same answer.

The picture below illustrates the statuses and the transition

options.

Figure 1. The statuses and the transition options.

If the RTGS system has the third option of payment queue

transition, it never ends up in the “gridlocked” state. It

demonstrates the unparalleled resilience to severe liquidity

shortages, producing no headache to the payment system

operator and participating banks, and can be called the

gridlock-proof.

2. The Proposed Solution Strategy

2.1. Mathematical Formalism

Let us consider the payment instructions submitted for

settlement procedure to the payment system by the

participating banks. Each of such instructions has it’s own

unique identification number, as well as identifies the

account to be debited, the account to be credited and the

value to be moved.

Let � be the total quantity of the accounts affected in any

way by at least one of those payment instructions.

Let �� – be the value of the resource kept at the account

number � and available for settlement during the settlement

cycle (account balance plus overdraft limit minus active

restrictions).

We consider the general case, where there can be more

than one payment instruction that tries to debit account

number � and to credit the account number �. Let ���� be the

value of the 	 − �ℎ such payment instruction. We then

introduce the decision variable
��� , taking it’s value =1, if

the corresponding payment instruction can be settled, and it’s

value =0 in the opposite case. At some stages of the solving

procedure we shall refrain from obeying the integrality

restriction to the decision variables. In such cases we

consider the variables
��� to be within

0 ≤
��� ≤ 1 (1)

interval.

Since there can be no such account with negative resource

at the end of settlement cycle, the difference between the

aggregated value of debiting payment instructions and

General status

Gridlocked

Deadlocked
Minimally Deadlocked

Something
to aim for

85 Vladimir Kulipanov: The Gridlock-Proof Functionality in Real Time Gross Settlement Systems

aggregated value of crediting payment instructions should

not exceed �� . The corresponding inequality restriction has

the form

∑ ���� ∗
����� −∑ ���� ∗
����� ≤ �� (2)

It can be easily verified that the quantity of such

restrictions is equal to the quantity of the accounts, that is �.

We seek to maximize the aggregate value of all settled

payment instructions, therefore we shall maximize the

Objective function

� = ∑ ���� ∗
������ (3)

In order to change the character of the restriction in (1) and

(2) from inequality to equality we shall introduce the

ancillary non-negative variables ���� and �� . 0 ≤ ���� (4)

0 ≤ �� (5)

With their help the collection of formulas (1) - (3) will be

re-written as follows:

���
�� 0 ≤
���0 ≤ ����0 ≤ ��
��� + ���� = 1∑ ���� ∗
����� −∑ ���� ∗
����� + �� = ��
��� − ������ � → "�

 (6)

And here we get the formal optimization problem. Michael

M. Güntzer, Dieter Jungnickel, Matthias Leclerc gave it the

name “Bank clearing problem”, providing each sub-class of

the problem with subscript showing the number of

participating banks (accounts) [5]. For example, they called

the sub-class of the problem where 20 accounts are visible, as �#$%&.

We shall refrain from sub-classification and providing the

subscripts for the reason that regardless of the quantity of the

participating banks (accounts), this problem falls into the one

wide class of integer linear programming.

The point, where

'
��� = 0���� = 1�� = ��
 (7)

will be the initial feasible basic solution.

2.2. Computational Complexity

There is a widely accepted perception that the problem (6)

is NP-complete [5]. However, the available proof is based on

the illustration that the �#$% is actually the Subset-Sum

Problem. Thus, the proof is formally valid only for the case

where only two banks participate.

The correct proof for the entire BCP problem (6) must be

based on the reduction of any known NP-complete problem

to the BCP.

Below we demonstrate the less strict property of the BCP

and show that it lies in NP class by reducing it to 0-1 integer

linear programming problem, which is known to be NP-

complete.

Theorem. Problem (6) lies in NP.

The unknown variables
��� are 0-1 integers. The

integrality of
��� and the equation
��� + ���� = 1 yield that ���� are also 0-1 integers. Finally, the unknown variables ��
are integers in range 0 ≤ �� ≤ �� .

Let us consider the representation of the �� in the binary

notation.

�� = (ℎ�) ∗ 2)+
),&

The representation of any number in the binary notation

uses only zeros and ones. Therefore each ℎ�) is 0-1 integer, L

is non-negative integer and is well below the length of the

Turing machine code of the entire BCP problem submitted

for processing.

Therefore, we may re-write the problem (6) in the form:

���
�� 0 ≤
���0 ≤ ����0 ≤ ℎ�) ≤ 1
��� + ���� = 1∑ ���� ∗
����� −∑ ���� ∗
����� + ∑ ℎ�) ∗ 2)+),& = ��
��� − ������ , ℎ�) 	− ������ � → "�

 (8)

After the transformation all the unknowns are 0-1 integers.

All other values are integers.

This problem is 0-1 integer programming which is known

to be NP-complete (Richard Manning Karp (1972).

"Reducibility Among Combinatorial Problems". In R. E.

Miller; J. W. Thatcher; J. D. Bohlinger (eds.). Complexity of

Computer Computations. New York: Plenum. pp. 85–103)

Despite the fact that the problem is of a well-known class,

no known algorithm is capable of solving it to optimality

under the restricted time and computer memory (2020). It

exhibits the exponentially growing computation complexity

as the number of variables increases.

2.3. Inventions and Tricks to Overcome the Computation

Complexity

2.3.1. “Second-best” Solution Instead of the Optimum

Given the fact that the number of payments in CBR

payment system is 500 000 (half a million) per hour, even the

rough estimate will prove the optimal solution be impossible

to find within reasonable time. In order to attack the problem

further, we shall have to forget about global optimum and to

be content with so-called “second-best” solution. The term

“second-best” means that the solution we seek to find, is (i)

feasible to the restrictions of problem (6); (ii) provably close

to the global optimum of (6) in terms of the Objective

function; (iii) unrestrictedly far from the global optimum of

 International Journal of Business and Economics Research 2020; 9(2): 83-93 86

(6) in terms of Euclidian distance.

2.3.2. Linear Program Relaxation

In order to seek the “second-best” solution it is quite

natural to start form taking away the integrality restriction for

the decision variables
��� .

After that the problem is re-formulated with no

requirement for the variable
��� to hold integer values:

���
�� 0 ≤
���0 ≤ ����0 ≤ ��
��� + ���� = 1∑ ���� ∗
����� −∑ ���� ∗
����� + �� = ��

� → "�

 (9)

This is nothing more than a linear program.

It has (� + 2") variables and (� + ") restrictions, where "	– is the quantity of all payment instructions submitted for

processing.

The effective solving algorithms for the problems of the

kind are well described in the literature. The most known is

the simplex-method. It takes (2� + 3")3 atomic arithmetic

operations to solve the problem to optimality in our case.

Other polynomial estimates for simplex method in arbitrary

matrixes can be found in [12] and [13].

But even dramatically reduced computation complexity of

the problem requires substantial computational power which

might be beyond available capacity. There are two main

reasons for that, and both could be effectively overcome.

2.3.3. Reducing the Quantity of Variables in Linear

Program

The first reason of high computation complexity is that the

number of variables in (9) is high. To reduce this number we

may insert one new variable 4�� instead of multiple variables
��� . We can do so since we no longer are bound by the

integrality restriction for variables
��� . We denote the sum ∑ ����� as 5�� .

5�� = (�����

Since every
��� cannot exceed 1, the following

observation is true

(���� ∗
���� ≤ (����� = 5��

Therefore, unless ∑ ����� = 0, the formal definition for the

variable 4�� will be

4�� = ∑ ���� ∗
����∑ �����

If ∑ ����� = 0, then there is no payment instruction that

tries to debit account number � and to credit the account

number �. In this case the variable 4�� will not be introduced.

It immediately follows from the definition, that

0 ≤ 4�� ≤ 1

With the help of above mentioned substitution, the

problem (9) will take the form

���
�� 0 ≤ 4��0 ≤ 6��0 ≤ ��4�� +6�� = 1∑ 5�� ∗ 4��� − ∑ 5�� ∗ 4��� + �� = ��

7 → "�

 (10)

Where the Objective function G inherits the properties of

Objective function F and is naturally defined as

7 = ∑ 5�� ∗ 4���� (11)

The ancillary non-negative variables 6�� are introduced in

order to ensure that inequality 4�� ≤ 1 transforms into

equation 4�� +6�� = 1.

The point where

'4�� = 06�� = 1�� = ��
 (12)

will serve as the initial feasible basic solution.

Thus the quantity of variables has been reduced by one

order of magnitude.

Once we know the solution to (10), we will derive the

respective non-integer variables
��� by means of the

following simple routine, which should be run for every

valid
1
 pair of {�, �}:

BEGIN

Assign all
��� : = 0

For each ; in range {1, 	}
(Try)
��<: = 1

If ∑ (���� ∗
���)� > 5�� ∗ 4��

Then (redeem)
��<: = 1 − ∑ (>?@A∗B?@A)A CD?@∗E?@>?@F

Exit routine

Else (leave)
��<: = 1

End if

Next s

END.

This routine sequentially tries each
��� to be equal 1, until

such assignment results in violation of the leading inequality ∑ ���� ∗
���� ≤ ∑ ����� . Ahead of the violation, all
���

variables get the value = 1. Once the violation has occurred,

the respective
��� variable gets non-integer value

somewhere in between zero and one, and the remaining
���

variables get value = 0.

1 valid pair of {�, �} means ∑ ����� > 0.

87 Vladimir Kulipanov: The Gridlock-Proof Functionality in Real Time Gross Settlement Systems

2.3.4. Switching to Dual Linear Program

The second reason that this linear problem (10) requires

substantial computational power is that the initial basic

solution (12) is very “far” from the optimal one. Both in

terms of Objective function and in terms of Euclidian

distance. The calculation procedure may take too long to

complete, whilst the result will be the optimal solution of the

linear program, not the original integer linear program. To

deal with this second difficulty we consider the dual linear

program.

Before this discussion, it is worth making a little step back

from the formalism of linear problem (10) and taking away

the ancillary variables. Formalism (10) is good for computer

implementation, but the theoretical discussion goes better

without them.

Thus, we are a little bit back to

' 0 ≤ 4��4�� ≤ 1∑ 5�� ∗ 4��� −∑ 5�� ∗ 4��� ≤ ��7 → "�

 (13)

2.3.5. Dual Linear Program and It’s Interpretation in

Terms of Network Flow

The idea is to solve the dual linear program instead of the

direct one. We are not aware of any other research with

regard to “bank clearing problem” where the authors

implement the concept of linear duality, ahead of our initial

publication in 2015. In this sense the result found in that

work was not known before. The concept of linear duality is

well described in the available literature (e.g., [14, 15, 16]).

With the “bank clearing problem” the switch to duality yields

substantial computation benefits to be described below.

The following observation will provide the reader with the

high-level understanding of these benefits. Assume that the

initial (“direct”) linear problem (13) for BCP is formulated in

the way “Start from the point where nothing is settled. Settle

as much as possible under resources restriction”, the dual

linear problem is formulated in the way “Start from the point

where everything is settled, even if the balances of some

accounts will go to infeasible negative area. Bring the

accounts to the consistent state (non-negative balance) whilst

rejecting as less as inevitable”. The computational benefit

comes from the fact that in the real-world instances of the

BCP there are few accounts that are in non-consistent state

(their balances are initially negative) at the starting point of

dual linear problem. In other words, it is hard to imagine that

even under the most severe liquidity shortage there will be

more than a handful of banks unable to cover their net debit

positions. The vast majority will have non-negative net debit

positions. Therefore the amount of computational work in

dual linear problem of BCP is nearly one order of magnitude

less, compared to the computational work in direct linear

problem.

Now we shall transform the linear program (13) into a dual

one. (The reader is addressed to [14, 15, 16] for details).

According to the theory of linear duality, each variable of

the “direct” linear program has the associated restriction in

the dual linear program. Let us take the particular variable 4�� .

We consider the associated column in matrix (13) which

generates the corresponding restriction in the dual linear

program. This column has only three non-zero elements.

The first non-zero element comes with (5��) coefficient,

derived from ∑ 5�� ∗ 4��� −∑ 5�� ∗ 4��� ≤ �� inequality

(associated with index � of the account-balance restrictions in

the “direct” linear program).

The second non-zero element appears in ∑ 5�� ∗ 4��� −∑ 5�� ∗ 4��� ≤ �� inequality (associated with index � of the

account-balance restrictions in the “direct” linear program),

and is equal to (−5��).

Finally, the last non-zero element (equals 1) appears in 4�� ≤ 1 inequality (associated with the {(�, �)} pair of indexes

of the “4�� upper-bound” restrictions in the “direct” linear

program).

Since the respective coefficient in the Objective function G

equals (5��), the inequality of the dual linear problem will

have the form

5�� ∗ G� − 5�� ∗ G� + 1 ∗ H�� ≥ 5�� (14)

where G�, G�, H�� are the dual variables. Each of them is non-

negative.

It is now important to draw attention to the function G� .
This function is defined for every node (that is, for every

account) and may be interpreted as a price function in the

residual network of the BCP. Before proceeding to residual

network of the BCP it is important to define the BCP

network.

2.4. The Properties of the BCP Network and BCP Residual

Network

2.4.1. Description of the BCP Network

We shall start with the definition of the flow in the BCP

network.

The BCP network is defined as directed graph, where

every node corresponds to the respective account.

The ordered pair (�, �) of the nodes in the BCP network is

connected by the edge, which has two parameters: (a) the

capacity, and (b) the cost.

The function flow over the edge (�, �) is feasible, if

0 ≤ HJKL(�, �) ≤ 5�M�5��4(�, �)
The cost of the edge (�, �) in the BCP network is constant

and equals 1.

The term 5�M�5��4(�, �) will serve as interpretation of the

aggregate value of payment instructions which try to debit

the account � and credit the account �. The term HJKL(�, �)
will serve as interpretation of the aggregate value of rejected

payments in the direction from the account � to the account �.
The cost of the entire flow in the BCP network is

5K;�(HJKL) = (HJKL(�, �) ∗ 5K;�(�, �)�,� = (HJKL(�, �)�,�

We shall define the intensity of flow over the node � as

follows:

 International Journal of Business and Economics Research 2020; 9(2): 83-93 88

N����;��4(�) = (HJKL(�, O)� −(HJKL(M, �)�

The intensity of the node may be thought of as an indicator

how much does the particular node inject into or consume

from the rest of network.

We shall refer to the node � as Debtor if this node has

strictly positive intensity, and we shall refer to the node � as

Creditor if this node has strictly negative intensity. If the

intensity of the node is exactly zero, then this node is

balanced and will be neither the Debtor nor the Creditor.

To make the proof of the below statements easier, the two

additional nodes are introduced into the BCP network.

The node S (stands for “source”) and the node T (stands

for “termination”).

We shall connect the node S with every Debtor by the

edge with capacity:

#�M�5��4(P, Q�R�K) = N����;��4(Q�R�K)

We shall connect every Creditor with the node T by the

edge with capacity:

#�M�5��4(# �S��K , T) = −N����;��4(# �S��K)
The cost of the new edges (P, Q�R�K) and (# �S��K , T)

in the BCP network will also be equal to 1.

We shall extend the definition of the flow in the BCP

network by defining the capacity and the flow over the edges (P, Q�R�K)	(# �S��K , T).
The flow over the edge (P, Q�R�K) will be:

HJKL(P, Q�R�K) = 5�M�5��4(P, Q�R�K) = N����;��4(Q�R�K)
where the value of N����;��4(Q�R�K) was calculated before the introduction of the nodes S and T.

The capacity and the flow over the edge (# �S��K , T) will be:

HJKL(# �S��K , T) = 5�M�5��4(# �S��K , T) = −N����;��4(# �S��K)
where the value of N����;��4(# �S��K) was calculated

before the introduction of the nodes S and T.

It is easy to see that the extended flow in the BCP network

leaves every node (except the nodes S and T) balanced.

It is also easy to see that N����;��4(P) = −N����;��4(T)
It is, therefore, reasonable to define the intensity of the

entire flow in the extended BCP network as follows:

N����;��4(HJKL) = N����;��4(P)
From now on, by referring to BCP network we shall mean

the extended BCP network.

We are now ready to describe the BCP residual network.

2.4.2. Description of the BCP Residual Network

The BCP residual network is defined as directed graph,

where every node corresponds to the respective account, in

full analogy with the BCP network. (Two extra nodes S and

T from the extension are also included from the very

beginning).

As opposed to BCP network, the ordered pair (�, �) of the

nodes in the BCP residual network is connected by the edge,

which has three parameters: (a) the available direct capacity,

(b) the available reverse capacity, and (c) the cost.

The available direct capacity in the BCP residual network

is defined as the difference between the capacity in the BCP

network and the flow over the edge in the BCP network.

�U��J�RJ�	S� �5�	5�M�5��4	(�, �) = 5�M�5��4(�, �) − HJKL(�, �)
The available reverse capacity in the BCP residual network

is defined as the flow over the counter-directed edge in the

BCP network.

�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) = HJKL(�, �)
We shall define the cost of the edge (�, �) in the BCP

residual network as follows:

5K;�(�, �) =
���
�� −1, �H	�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) > 0

1 V�H	�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) = 0	��S�U��J�RJ�	S� �5�	5�M�5��4	(�, �) > 0
��H����4 V�H	�U��J�RJ�	 �U� ;�	5�M�5��4	(�, �) = 0	��S�U��J�RJ�	S� �5�	5�M�5��4	(�, �) = 0

The term “infinity” is actually used to represent any

value which is above the cost of any feasible chain along

the edges with non-zero capacity (both direct or reverse) in

the BCP residual network. The value 3*n is well suited for

that role, for the reason that even if the chain passes

through every node in the BCP residual network over the

edges with zero reverse capacity and non-zero direct

capacity, the cost of that chain will be (n+1) at most.

Passing through the edges with zero available capacity is

prohibited.

2.4.3. The Maximum Flow in the BCP Network and in the

BCP Residual Network

Definition of the Max flow in BCP network

The feasible function flow with the maximum possible

intensity in the extended BCP network will be Max flow

function.

Properties of the BCP residual network

Claim 1.

Any feasible flow in the non-extended BCP network is a

Max flow in the BCP extended network with the source S

89 Vladimir Kulipanov: The Gridlock-Proof Functionality in Real Time Gross Settlement Systems

and termination T.

The proof immediately follows from the definition of the

BCP extended network. It is sufficient to point out that the

source node S is connected to the rest of the BCP extended

network by the edges with the exhausted capacities. And so

does the node T. Therefore it is impossible to transfer more

from the node S to the node T compared to what is

transferred by the known function flow.

2.4.4. The Maximum Flow Minimum Cost in the BCP

Network

Claim 2.

The Max flow function flow in the BCP extended network

is also Max flow Min cost if and only if there are no negative

cost cycles in the BCP residual network.

Part 1 (if there is a negative cost cycle in the BCP residual

network, then the function flow is not Min cost)

Consider the negative cost cycle in the BCP residual

network. Since it’s cost is negative, every edge in the

respective cycle in the extended BCP network has either

positive available reverse capacity, or positive available

direct capacity. The reason is that otherwise (if both direct

and reverse capacities are zeros) the cost of the respective

edge in the BCP residual network would be infinity, and the

cost of the entire cycle will be infinity as well.

Every node in the cycle of the BCP residual network may

be transited by the edges in the four possible combinations

regarding their costs. The first option is that we arrive to the

node via the edge with the 5K;� = −1 and leave the node via

the edge with the 5K;� = −1. The second option is that we

arrive to the node via the edge with the 5K;� = −1 and leave

the node via the edge with the 5K;� = +1. The third option is

that we arrive to the node via the edge with the 5K;� = +1

and leave the node via the edge with the 5K;� = −1. And

finally, the fourth option is that we arrive to the node via the

edge with the 5K;� = +1 and leave the node via the edge

with the 5K;� = +1.

Now we shall show how to modify the flow in the

extended BCP network, so that it’s intensity remains the

same, but the cost is decreased.

Each edge (u,v) of the cycle produces the flow alternation

opportunity according to the rule:

∆HX,Y = Z �U��J�RJ�	S� �5�	5�M�5��4([, U); 	�H	5K;�([, U) = 1�U��J�RJ�	 �U� ;�	5�M�5��4([, U); 	�H	5K;�([, U) = −1

Note, that ∆HX,Y is strictly positive value (∆HX,Y > 0).

We shall denote ∆H = min{(X,Y)} ∆HX,Y . That is, we

compare all flow alternation opportunities along the edges

and select the least one. Note, that ∆H is also a strictly

positive value (∆H > 0).

Let us produce the recipe to the flow alternation in the

BCP extended network:

If the edge (u,v) of the cycle has the 5K;�([, U) = −1 in

the BCP residual network, we shall decrease the flow over

the counter-directed edge (v,u) in the extended BCP network

by the value ∆H. This alternation is possible, since:

∆H ≤ ∆HX,Y = �U��J�RJ�	 �U� ;�	5�M�5��4([, U) = HJKL(U, [)

If the edge (u,v) of the cycle has the 5K;�([, U) = +1 in

the BCP residual network, we shall increase the flow over the

same edge (u,v) in the extended BCP network by the value ∆H. This alternation is possible, since:

∆H ≤ ∆HX,Y = �U��J�RJ�	S� �5�	5�M�5��4([, U)
Now we shall consider every transition option (of the four

possible) in the BCP residual network and discuss how the

balance of the respective node is affected by the suggested

flow alternation. Assume that we interested to observe the

balance on the node v in the cycle and we arrive there from

node u and leave towards node w.

In the first option where we arrived via the edge (u,v) with

the 5K;� = −1 and leaved this node via the edge (v,w) with

the 5K;� = −1, we have decreased both the inbound flow

over the edge (w,v) and the outbound flow over the edge (v,u)

by the same value ∆H. Thus, the balance of the node v is not

affected by the change.

In the second option where we arrived via the edge (u,v)

with the 5K;� = −1 and leaved this node via the edge (v,w)

with the 5K;� = +1, we have increased the outbound flow

over the edge (v,w) and decreased the outbound flow over the

edge (v,u) by the same value ∆H. Thus, the balance of the

node v is not affected by the change.

In the third option where we arrived via the edge (u,v) with

the 5K;� = +1 and leaved this node via the edge (v,w) with

the 5K;� = −1, we have decreased the inbound flow over the

edge (w,v) and increased the inbound flow over the edge (v,u)

by the same value ∆H. Thus, the balance of the node v is not

affected by the change.

Finally, in the fourth option where we arrived via the edge

(u,v) with the 5K;� = +1 and leaved this node via the edge

(v,w) with the 5K;� = +1 , we have increased both the

outbound flow over the edge (v,w) and the inbound flow over

the edge (u,v) by the same value ∆H. Thus, the balance of the

node v is not affected by the change.

Therefore, we may conclude that the suggested flow

alternation is feasible and does not change the intensity of the

flow in the extended BCP network. However, the cost of the

alternated flow can be obtained from the cost of the initial

flow by adding the value which is equal to ∆H times the cost

of the cycle, which is strictly negative. For that reason the

initial flow cannot be Min cost.

Part 2 (if function flow is not Min cost then there is a

negative cost cycle in the BCP residual network)

Assume that another function HJKL⊛ which is of the same

intensity and is Min cost. Consider the flow which is the

difference between the functions HJKL⊛ and flow. This

difference is circulation, since it brings the intensity of every

node to zero. Note, that the cost of this circulation is negative

according to the BCP residual network. Since every

circulation can be entirely decomposed into cycles, then the

cost of at least one these cycles has to be negative.

2.4.5. The Price Function

Now we are ready to define the price function in the BCP

residual network. This function can be used to evaluate the

 International Journal of Business and Economics Research 2020; 9(2): 83-93 90

optimality (to verify Min cost property) of the non-extended

BCP network.

Consider the ordered pair of nodes (�, �), which has strictly

positive capacity (either direct or reverse) from the node � to

the node � in the BCP residual network. For the BCP residual

network we call the price function G feasible if for every edge (�, �) with strictly positive capacity (from the node � to the

node �) it holds:

G(�) − G(�) + 5K;�(�, �) ≥ 0 (15)

Claim 3.

The BCP residual network has feasible price function z if

and only if it contains no negative cost cycles.

Part 1 (If there is a feasible price function in the BCP

residual network, then there are no negative cost cycles)

Assume that there is a feasible price function z in the BCP

residual network. Let us evaluate the cost of any given cycle

in the BCP residual network. The cost of the cycle is a sum

of all cycle edges:

(5K;�([, U){(X,Y)}∈DED)b

We add and subtract the sum of prices of vertexes along

the cycle:

∑ 5K;�([, U){(X,Y)}∈DED)b = ∑ 5K;�([, U){(X,Y)}∈DED)b + c∑ dYY∈DED)b − ∑ dXX∈DED)b e

Then, regroup

∑ 5K;�([, U){(X,Y)}∈DED)b = ∑ (5K;�([, U) + dY − dX){(X,Y)}∈DED)b

Use (15), and obtain

(5K;�([, U){(X,Y)}∈DED)b ≥ 0

That is, the cost of any given cycle in the BCP residual

network is non-negative.

Part 2 (If there are no negative cost cycles in the BCP

residual network then there is a feasible price function)

We are going to show that the shortest path distance

(further: Spd) of any vertex u in the residual BCP network,

where the cost of an edge is taken as it’s length may be used

to produce the price function. We define the function

f([) = −PMS([)
Now we shall show that f([) meets the definition

requirement of the price function.

Let us start from the termination point T. Assign the PMS(T) = 0

Compute the shortest path distances for every reachable

vertex using Bellman-Ford algorithm. It is possible, since

there are no negative cost cycles. If the vertex is not

reachable, it means that there is now flow through this node,

and it’s price may be taken arbitrary. We shall assign the

price=0 in such cases.

According to the properties of the shortest path distance:

PMS([) ≤ PMS(U) + 5K;�(U, [)
It easily yields:

PMS(U) − PMS([) + 5K;�(U, [) ≥ 0

−f(U) + f([) + 5K;�(U, [) ≥ 0

f([) − f(U) + 5K;�(U, [) ≥ 0

Which is exactly the definition of the price function (15)

Once the BCP residual network does not contain negative-

cost cycles – the respective flow of the BCP network has the

minimum cost. Thus, the existence of the feasible price

function over the BCP residual network is the criteria for the

minimum cost of the flow in the BCP network. Remember

that the existence of that function is a precondition of any

feasible solution to the dual linear program (14). That is,

every feasible solution to the dual linear program produces

the MinCost property of the flow in BCP network.

Please note, that (15) and (14) are equivalent. Below is the

short proof of that.

Claim 4. (15) and (14) are equivalent statements

Since 5K;�(�, �) ≥ −1 , we may introduce the value ��� = 5K;�(�, �) + 1 ≥ 0

G(�) − G(�) + 5K;�(�, �) ≥ 0

G(�) − G(�) + 5K;�(�, �) + 1 − 1 ≥ 0

G(�) − G(�) + (5K;�(�, �) + 1) − 1 ≥ 0

G(�) − G(�) + ��� − 1 ≥ 0

G(�) − G(�) + ��� − 1 ≥ 0

G(�) − G(�) + ��� ≥ 1

5�� ∗ G(�) − 5�� ∗ G(�) + 5�� ∗ ��� ≥ 5��

Since both the unknown variable H�� and the product 5�� ∗ ��� are non-negative values, we are under no burden to

define H�� = 5�� ∗ ��� . This equation should be treated as

guidance how to obtain the value of the dual variable H��

based on the knowledge of the 5K;�(�, �) , and vice versa

(how to obtain the value of the 5K;�(�, �) based on the

knowledge of the dual variable H��).

This immediately yields:

5�� ∗ G(�) − 5�� ∗ G(�) + H�� ≥ 5��

The Objective function of the dual linear problem brings

the intensity of the flow in the BCP network to the maximum.

That is, the entire dual linear program to the BCP is

91 Vladimir Kulipanov: The Gridlock-Proof Functionality in Real Time Gross Settlement Systems

MaxFlow MinCost problem.

2.5. Some Consequences and Complementary Results

Based on the MaxFlow MinCost interpretation for the BCP

residual network we may group the accounts according to

their respective prices.

The picture below illustrates the plausible outcome of that

procedure:

Figure 2. The plausible outcome of that procedure.

The higher the number of the group, the more valuable is

the liquidity, that may be injected onto the account from this

group. For example, if we consider the task to decrease the

value of rejected payments, the first candidate to receive the

injection of liquidity will be the account from the left-most

group.

Consider the injection of liquidity into the account from

the group zero. It is useless from the perspective of

decreasing the value of the rejected payments. The reason is

simple: there are no rejected payments originating from the

accounts in this group.

Consider the injection of liquidity into the account from

the group three. It triggers a well-predicted chain of

cascading settlement passing through each of the groups:

Figure 3. The cascading settelement triggered by liquidity injection.

Thus, every injected penny triggers the settlement process

of the total value equal to the product of the rejected sum and

the number of the group.

As a general rule, the accounts from the left-most group

(in our case – the Third) contribute the most to the Gridlock

severity, whilst the injected liquidity into the accounts from

the left-most group contribute the most to the Gridlock

resolution.

2.6. Meeting the Integrality Restriction

Up to this point of the BCP resolution, our strategy was

ultimately optimal. That is, no other strategy may deliver

better results.

However at this point we need to recall the integrality

restrictions of the (6).

The proposed approach we follow is a heuristic, and

therefore it is in no way an optimal strategy from the global

perspective of the entire BCP, and there are known artificial

instances of the BCP where the suggested approach fails to

produce non-trivial result despite there exists a feasible non-

trivial solution. Second, this is not the only possible heuristic

that can deliver the results of the comparable quality during

the comparable time of calculations. And finally, it is

possible to design better heuristics for the problem. The most

likely directions of the investigations would be within the

areas: of integer linear programming, of NP-hard problems

and of quantum computing.

The integer step of the algorithm requires that it is run in a

sequence of iterations, and the graphical structure of the

optimal flow (the dual problem of continuous linear program

relaxation) becomes a dynamic parameter. This structure is

changed on each iteration to meet the amendments, that

might be produced due to the deviation from the optimal flow

(on one hand) and come as a result reduction of the intensity

of the flow (on the other hand).

At the start of the iteration the existing structure is

analyzed to pick up the next suitable edge with strictly

positive flow.

In picking the suitable edge it is essential to take

precautions that there will be no need to pick this edge again

at the later iterations of the integer step. Or, at least, there

will be little chances to do so.

The heuristic suggests that it reasonable to select the next

suitable edge from the edges, that link the left-most group

(the group with highest price) with the immediately adjacent

group (the group with highest price minus one). Indeed, if the

precedence was arranged in apparently the opposite way,

then it would mean that we would first process the flow that

terminates in the group with the zero price (the cheapest

nodes). But this flow is seriously dependent on the flow in

the left side of the structure (more expensive nodes) which

lacks flexibility. If subsequently we failed to find exact

solution of the knapsack on the edge in the left (i.e.

“expensive”) side of the picture, this would mean that the

intensity of the flow terminating in the group with the zero

price level would change, producing the need to repeat the

respective knapsack search at the cheapest nodes.

Group 0Group 1Group 2Group 3

32

1
2

3

711

14

15

16

19

20

21

24

25

26

29

30

31

4

5

6

8

9

10

1217

18

22

23

27

28

13

Group 0Group 1Group 2Group 3

1

20

4

23

 International Journal of Business and Economics Research 2020; 9(2): 83-93 92

Once the suitable edge is selected, the collection of the

individual payments is retrieved from the database, where the

ordered pair of accounts corresponds to the selected edge and

to the direction of the flow. The collection is sorted in

ascending manner for the payment value.

The knapsack packing subroutine (solving Sub-Set Sum

problem) is called to identify those payments, that taken as a

group, give the aggregate value not less than the flow along

the edge, but at the same time as low as possible. Ideal

situation would be, if the aggregate value of the identified

group of payments is equal to the flow intensity along the

edge. It might sound strange and counterintuitive, but the

ideal situation is a frequent event with really high probability.

Observe that the knapsack problem has the obvious solution

when the intensity along the edge achieves the capacity

restriction: in this case all individual payments along the

edge should be selected. There are other frequent situations,

when the knapsack is solved to optimality as well.

If the knapsack subroutine returns the ideal situation, then

the current edge is removed from the structure and the

intensity of the flow is decreased, but there is no further need

to re-structure the remaining flow and we proceed with the

next iteration. Otherwise the flow function and the respective

structure are fine-tuned to respond to the deviation.

The iteration is complete.

Once the structure is empty (only one group of the

accounts can be identified), there is no need to perform the

next iteration and the entire algorithm is complete. The

feasible solution to BCP is obtained. The practice and

common sense judgement suggest that this solution is

reasonably close to the optimal solution of the real-world

instances of the BCP.

3. Result

The pivotal question is: how far is the “second-best”

solution from the global optimum of the BCP? Below we

bring some illumination on this question.

Assume that vector
∗ is the optimal solution to BCP. We

do not know this vector and it is little chance to find it as a

result of the computational procedures.

However we can obtain the vector
& which is the optimal

solution to the linear program relaxation of the BCP. This

vector is non-integer, but it produces the upper bound for the

Objective function of the BCP. That is,

�(
&) ≥ �(
∗)
Assume that the solution we find as a result of the heuristic

algorithm is
g. It is feasible to all BCP restrictions including

integrality restriction. For that reason
g produces the lower

bound for the Objective function of the BCP. That is,

�(
&) ≥ �(
∗) ≥ �(
g)
Every time the BCP is being solved, the upper and the

lower boundaries can be easily obtained. The practice and

common sense judgement suggest that the real-world

instances of the BCP are prone to demonstrate the following

inequality:

�(
&) ≤ 1,03 ∗ �(
g)
That is, the “second-best” solution is located within very

narrow interval in terms of the Objective function. Therefore,

no other computational strategy can demonstrate

substantially better (more than few percentage points of the

Objective function) results than that we have described above

in this article.

4. Conclusion

Before this publication there was little hope to attack the

Bank Clearing Problem for optimality. However the

pragmatic approach illustrated here clearly shows that BCP

may be successfully attacked within the well affordable time

for the “second-best” solution which is hardly distinguishable

from the global optimum in terms of the Objective function.

This is achieved by the proof of the equivalence of (a) the

dual linear program of the LP relaxation of the BCP and (b)

the MaxFlow-MinCost in the BCP residual network.

Under the liquidity shortage, the price structure of the

MaxFlow-MinCost clearly pinpoints the sub-collection of the

accounts which are the most efficient targets for liquidity

injections from the National Central bank. The liquidity

injections into the most “expensive” accounts produce the

highest effect, whilst the liquidity injections into the accounts

with zero price level are useless.

The Real Time Gross Settlement Systems with the

liquidity saving mechanism based on the proposed algorithm

are prone to demonstrate unparalleled liquidity efficiency and

are safe from falling into gridlocks even under the most

severe liquidity shortages ever experienced in the banking

history.

References

[1] Rivandra K. Ahuja, Thomas L. Magnanti, James B. Orlin
“Network Flows: Theory, Algorithms, and Applications”.

[2] Ford, L.R.; Fulkerson, D.R. (1956). "Maximal flow through a
network". Canadian Journal of Mathematics. 8: 399-404. doi:
10.4153/CJM-1956-045-5

[3] Thomas Cormen, Charles Leiserson, Roland Rivest
“Introduction to Algorithms”, p. 536-573.

[4] Christofides N., Graph theory: an algorithmic approach. 1975,
London: Academic Press ISBN 0121743500 (ISBN 13:
9780121743505).

[5] Michael M. Güntzer, Dieter Jungnickel, Matthias Leclerc;
Efficient algorithms for the clearing of interbank payments;
European Journal of Operational Research 106 (1998) p. 212-
219.

[6] Marco Galbiati Kimmo Soramäki. “Liquidity-saving
mechanisms and bank behavior” Bank of England Working
Paper № 400, July 2010.

93 Vladimir Kulipanov: The Gridlock-Proof Functionality in Real Time Gross Settlement Systems

[7] Harry Leinonen (ed.) “Simulation studies of liquidity needs,
risks and efficiency in payment networks”. Proceedings from
the Bank of Finland Payment and Settlement System Seminars
2005–2006.

[8] David Karger. Massachusetts Institute of Technology.
Advanced Algorithms. Lecture 16: 10/11/2006. Minimum cost
maximum flow, Minimum cost circulation, Cost/Capacity
scaling.

[9] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost
circulations by canceling negative cycles. J. Assoc. Comput.
Mach., 36 (4): 873-886, 1989.

[10] ´E. Tardos. A strongly polynomial minimum cost circulation
algorithm. Combinatorica, 5 (3): 247-255, 1985.

[11] Shafransky Y. M., Doudkin A. A. An optimization algorithm
for the clearing of interbank payments. European Journal of
Operational Research, 2006, Vol. 171, 743-749.

[12] Alexander Schrijver, Theory of Linear and Integer
Programming. John Wiley & sons, 1998, ISBN 0-471-98232-6
(mathematical)

[13] The simplex algorithm takes on average D steps for a cube.

Borgwardt Karl-Heinz The simplex method: A probabilistic
analysis. — Berlin: Springer-Verlag, 1987. — Vol. 1. — P.
xii+268. — ISBN 3-540-17096-0.

[14] Kantorovich L.V., Mathematical methods for production
process planning and management // Leningrad State
University Press, 1939 (in Russian language).

[15] Gass Saul I., Linear Programming (Methods and Applications)
Applied Science Department, International Business Machines
Inc., Graduate School, U.S. Department of Agriculture,
McGraw-Hill Book Company Inc., 1958.

[16] Muravyov V.I., Method of regular improvement with the
alternating-size basis for the linear programing. — Collection
"Operational Research and Statistical Model Methods". —
Leningrad: Leningrad State University Press, 1972 (in Russian
language).

[17] David Karger, 6.854 Advanced Algorithms, Minimum cost
maximum flow, Minimum cost circulation, Cost/Capacity
scaling, Lecture 16: 10/11/2006

[18] E. Tardos. A strongly polynomial minimum cost circulation
algorithm. Combinatorica, 5 (3): 247-255, 1985.

